

Email: editor@ijerst.com or editor.ijerst@gmail.com

VEHICLE TO VEHICLE COMMUNICATION

¹MR. R.V.SUBBAIAH, ²PADMANABHUNI KEERTHI, ³POTLAPALLI NAGALAKSHMI, ⁴KOTU MANIKANTA, ⁵GOLLAPOTHU SYLESH BABU

¹(ASSISTANT PROFESSOR), ²³⁴⁵B.TECH STUDENTS

DEPARTMENT OF CSE, RISE KRISHNA SAI PRAKASAM GROUP OF INSTITUTIONS

ABSTRACT

Vehicle-To-Vehicle (V2V) Correspondence Incorporates A Distant Association Where Vehicles Send Messages To Each Other With Information Dynamically. This Data Would Integrate Paces, Fire Alerts, Crisis Leaders, Region, Heading Of Development, Dealing Back, And Loss Of Safety. The Chief Concern Of Vehicle-To-Vehicle Correspondence Development Through LI-FI Is To Clear Out Costly And Life-Threatening Fender Benders. Li-Fi Is Expected To Use Drove Lights Like Those At This Point Being Utilized In A Seriously Enormous Number Of Energy-Conscious Homes And Work Environments. The Bulbs Are Furnished With A Chip That Manages The Light Vaguely For Optical Data Transmission. Li-Fi Data Is Then, At That Point, Conveyed By The Drove Bulbs And Scraped By Photoreceptors. The V2V Correspondence Through LI-FI Is

Standard Completed By The Microcontroller. Node **MCU** The Microcontroller That Regulates The Entire Structure. The Data Like Fire Preparedness, And Revoke Emergency Switches That Upon Inception Alert Various Vehicles. The System Has A High Data Rate And Follows The 802.11bb Show. The Security Of The Data Is Moreover Present. The Vehicle-To-Vehicle Correspondence Through Li-Fi Is Brought Out Through The Node MCU Microcontroller. The Results Integrate The Connection Between The Fire Preparedness And Emergency Plausibility. The Fire Signal Is Sanctioned Assuming There Ought To Emerge An Event Of Fire And LCD Shows Fire Prepared If Of Emergency The LCD Shows Emergency Alert And Is Prepared To Give Information To Another Vehicle. Today's Day-To-Day Activities Make Extensive Use Of LED-Based Lighting, Which Can Also Be Used For Communication Due To Advantages Such

As Fast Switching, Great Power Efficiency And Safety To Human Vision. As A Result, This Project Will Discuss Environmental Friendly Data Communication Between Vehicles Using Visible Light, Which Is Made Up Of White Leds That Transfer Audio Signals To The Receiver. VLC Has A Bright Future Ahead Of It, And It Complements Current RF Communication By Increasing Efficiency.

KEYWORDS: Sensors, V To V Interaction, Li-Fi Technology, Node MCU.

1.INTRODUCTION

1.1 Introduction

The Rapid Development Of Technology Within The Automotive And Transportation Sectors Has Led To Significant Advancements In Communication Systems Aimed At Improving Vehicle Safety, Reducing Traffic Congestion, And Enabling More Efficient Transportation Networks. One Of The Major Breakthroughs In This Field Is Vehicle-To-Vehicle (V2V)Communication, Where Vehicles Exchange Critical Information Such As Speed, Direction, And Proximity In Real-Time To Prevent Collisions And Ensure Safer Driving. Historically, V2V Communication Has Relied Heavily On Radio Frequency (RF) Technologies Like Dedicated Short-Range Communication (DSRC) Cellular Vehicle-To-Everything (C-V2X). These RF-Based Systems Have Laid The Groundwork For V2V Interaction Allowing Vehicles To Send And Receive Data Wirelessly. However, With The Increasing Number Of Vehicles On The Road And The Growing Demand For Faster And More Secure Communication, These Systems Face Several Limitations, Such As Limited Bandwidth, High Latency, And Security Concerns. This Is Where Light Fidelity (Li-Fi) Technology Comes Into Is A Play. Li-Fi Revolutionary Communication System That Uses Visible Light From Light Emitting Diodes (Leds) To Transmit Data. It Operates In The Which Visible Light Spectrum, Is Significantly Larger Than The RF Spectrum, Offering Greater Bandwidth, Higher Data Transmission Rates, And Enhanced Security. Li-Fi Uses Modulated Light To Encode Data, Which Can Be Transmitted Between Vehicles Through Their Headlights, Taillights, Or Other Lighting Components.

This Report Aims To Explore The Implementation Of Li-Fi In Vehicle-To-

Vehicle (V2V) Communication. The Research Will Delve Into The Technological Principles Behind Lifi, Compare It With Traditional RF-Based V2V Systems, And Assess Its Potential Advantages In Terms Of Safety, Speed, And Efficiency On The Road.

1.2 Aim Of The Project

The Aim Of This Project Is To Investigate And Analyse The Feasibility Of Using Li-Fi Technology In Vehicle-To-Vehicle (V2V) Communication Systems. The Project Seeks To: Evaluate The Potential Benefits Of Adopting Li-Fi Over Conventional RF-Based Communication Methods For V2V Interactions.

Design A Model For Implementing Li-Fi In Vehicles, Utilizing The Headlights And Taillights For Data Transmission. Analyse Performance The Of Li-Fi-Based Communication In Terms Of Speed, Bandwidth, Security, And Reliability. Demonstrate How Li-Fi Can Improve Road Safety, Traffic Management, And The Functionality Of Autonomous Vehicles Through Real-Time Data Exchange. By The End Of The Project, A Clear Understanding Of How Li-Fi-Based V2V Communication Can Contribute To The Future Of Smart Transportation Systems Will Be Developed.

The Research Will Also Outline The Challenges Associated With The Adoption Of This Technology And Propose Potential Solutions For Overcoming Them.

1.3 Motivation

The Increasing Number Of Vehicles On The Road Has Led To A Corresponding Rise In Traffic Accidents, Many Of Which Are Caused By A Lack Of Communication Between Vehicles. With More Cars, Trucks, And Other Vehicles Sharing The Road, It Is Becoming Increasingly Difficult To Prevent Collisions, Manage Traffic Efficiently, And Ensure Driver Safety. Current RF-Based V2V Communication Systems, Such As DSRC And C-V2X, Have Been Widely Studied And Implemented, But They Suffer From Several Limitations: Limited Bandwidth: The RF Spectrum Is Shared By Many Devices, Leading To Spectrum

- Congestion, Particularly In Urban Areas
 Where Multiple Devices Compete For The
 Same Frequency. Interference: RF Signals
 Can Be Disrupted By Physical Obstacles
 Such As Buildings,
- Tunnels, Or Even Other Vehicles, Which Can Result In Data Loss Or Delays In Communication. Security Vulnerabilities:

RF Signals Can Be Intercepted Or Hacked, Raising Privacy And

Security Concerns. Li-Fi Technology
 Offers A Solution To Many Of These
 Challenges.

Since Li-Fi Operates Within The Visible Light Spectrum, Which Is Not As Congested As The RF Spectrum, It Provides Greater Bandwidth And Higher Data Transmission Rates. Additionally, Li-Fi Is Inherently More Secure Than **RF-Based** Communication Because Light Does Not Pass Through Walls Or Solid Objects, Making It Difficult For External Entities To Intercept The Data. The Motivation For This Project Arises From The Need For A Faster, More Reliable, And Secure Communication System For Vehicles, Particularly As The Automotive Industry Moves **Towards** Autonomous Driving. As Vehicles Become Smarter And More Connected,

The Demand For Real-Time Communication Will Only Increase. Li-Fi-Based V2V Communication Offers A Way To Meet These Demands While Improving Road Safety And Traffic Management. 1.4 Objectives To Achieve The Project's Aim, The Following Objectives Have Been Identified: Study The Existing V2V

Communication Systems: Analyse Current RF-Based V2V

- Communication Technologies, Such As
 DSRC And C-V2X, Focusing On Their
 Limitations, Particularly In Terms Of
 Bandwidth, Latency, And Security.
 Investigate The Principles Of Li-Fi
 Technology: Understand The Underlying
 Working
- Mechanism Of Li-Fi, Including The Modulation Of Visible Light, Data Transmission Through Leds, And The Reception Of Data By Photodetectors.

This Objective Will Explore How Li-Fi Can
Be Effectively Integrated Into V2V
Communication Systems. Design A Model
For Li-Fi-Based V2V Communication:
Develop A Conceptual Model For

- Implementing Li-Fi In Vehicles, Outlining
 The Hardware (LED Transmitters,
 Photodetectors) And Software Components
 Required To Facilitate Communication
 Between Vehicles Using Visible Light.
 Evaluate The Performance Of Li-Fi-Based
 V2V Communication: Compare Li-Fi-Based
- V2V Communication With RF-Based Systems By Analysing Key Performance Indicators Such As Data Transmission

Speed, Latency, Bandwidth Utilization, Interference, And Security. Explore Real-World Applications: Investigate How Li-Fi Technology Can Be Applied In

• Real-World Scenarios, Particularly For Autonomous Vehicles And Smart Traffic Management Systems. This Will Involve Assessing The Practicality And Scalability Of Li-Fi For Large-Scale Deployment In Urban And Highway Environments. By Fulfilling These Objectives, The Project Will Provide A Comprehensive Understanding Of The Potential Of Li-Fi To Technology Transform Communication And Improve The Overall Safety And Efficiency Of Transportation Systems.

2.LITERATURE SURVEY

The Following Literature Provides A Foundation For Understanding The Current State Of V2V Communication And The Potential Of Li-Fi Technology:

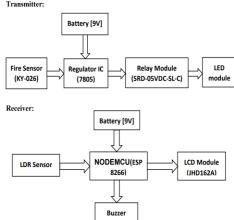
1. Traditional V2V Communication
Systems: Smith Et Al. (2019) Conducted A
Detailed Study On The Performance Of
Dedicated Shortrange Communication
(DSRC) Systems In High-Density Traffic
Environments. The Study Revealed That

Radio Frequency Congestion And Limited Significantly Affected Bandwidth Posing A Communication Reliability, Challenge To Traffic Safety. Jones Et Al. (2020) Explored The Implementation Of Cellular V2X (C-V2X) For Vehicular Communication. While C-V2X Offers Better Range And Higher Data Rates Than DSRC, The Study Highlighted Susceptibility To Interference, Particularly In Areas With A High Concentration Of Cellular Devices.

2. Li-Fi Technology And Its Advantages:

Haas Et Al. (2018) Introduced Li-Fi As A Communication High-Speed System Capable Of Achieving Gigabit Data Transmission Rates. The Study Emphasized The Potential Of Li-Fi To Serve As A Secure, High-Bandwidth Alternative To RF Communication Systems, Particularly In Environments Where Fast, Secure Data Transfer Is Critical. Chen Et Al. (2021) Investigated The Feasibility Of Li-Fi For V2V Communication. Their **Findings** Demonstrated That Li-Fi Offers Lower Latency And Higher Security Compared To RF-Based Communication Systems. The Study Also Noted That Li-Fi Could Effectively Address The Spectrum

Vo


Congestion Issues Faced By RF Systems, Making It Ideal For Urban Environments.

3. Applications Of Li-Fi In Autonomous

Vehicles: Wang Et Al. (2022) Examined The Role Of Real-Time Communication In The Development Of Autonomous Vehicles. Their Study Proposed That Li-Fi Could Serve As A More Reliable Communication For Autonomous Method Vehicles. Enabling Faster Reaction Times And More Accurate Decision-Making On The Road Compared To Traditional Rfbased Systems. The Literature Survey Confirms That While RF-Based V2V Systems Have Laid A Foundation For Strong Vehicle Communication, Li-Fi Technology Offers Distinct Advantages In Terms Of Speed, Security, And Reliability. As Such, It Has The Potential To Play A Key Role In The Future Of Smart Transportation Autonomous Vehicle Networks.

BLOCK DIAGRAM:

ISSN 2319-5991 www.ijerst.com Vol. 21, Issue 2, 2025

3.PROPOSED SYSTEM

The Involves The Proposed System Integration Of Li-Fi Technology Into V2V Communication. Unlike Traditional RF-Based Systems, Li-Fi Uses Visible Light For Transmission, Offering Data Several Advantages: Higher Bandwidth: The Visible Light Spectrum Is 10,000 Times Larger The RF Spectrum, Than **Providing** Significantly More Bandwidth For Data Transmission. Enhanced Security: Li-Fi Signals Are Confined To The Line Of Sight, Meaning They Cannot Pass Through Walls Or Solid Objects, Reducing The Risk Of Data Interception Or Hacking. Low Latency: Li-Fi Offers Ultra-Fast Data Transmission With Very Low Latency, Making It Ideal For Real-Time V2V Communication In Critical Situations Such As Accident Avoidance. In The Proposed System, Vehicles Equipped Are With LED

Headlights And Taillights That Serve As Data Transmitters, While Photodetectors Mounted On Vehicles Act As Receivers. Data Is Encoded Into The Modulated Light Signals And Transmitted Between Vehicles As They Pass Each Other Or Approach An Intersection. The System Can Be Used For Various V2V Applications, Including Collision Avoidance, Traffic Management, And Autonomous Vehicle Coordination.

4.METHODOLOGY

The Methodology For Implementing A Li-Fi-Based V2V Communication System Involves Several Steps:

- 1. System Design: The First Step Involves
 Designing The Li-Fi Communication
 System That Integrates With Existing
 Vehicle Lighting Systems. This Includes
 Selecting Appropriate Leds For Data
 Transmission And Photodetectors For Data
 Reception.
- 2. Data Encoding And Modulation:
 Develop An Encoding Algorithm That Can
 Modulate Data Into Light Signals. This
 Involves Creating A Modulation Technique,
 Such As On-Off Keying (OOK) Or Pulse
 Position Modulation (PPM), That Translates
 Binary Data Into Modulated Light Pulses.

- Simulation And Testing: Conduct Simulations To Test The Performance Of Li-Fi The System Under Different Conditions, Such As Varying Light Intensity, Distance Between Vehicles, And Vehicle Speeds.Test The System Controlled Environments To Evaluate Its Effectiveness In Realworld Scenarios, Particularly For Short-Range Communication, Low-Latency Requirements, And Security.
- 4. Field **Trials:** After Successful Simulations, Field Trials Will Be Conducted In Various Driving Environments (E.G., Highways, Urban Areas, Intersections) To Assess The **Practicality** Of The System. These Trials Will Measure The System's Ability To Handle Real-Time Data Transmission, Manage High-Traffic Density, And Ensure Vehicle Safety.
- 5. Performance Evaluation: Finally, The System Will Be Evaluated Against Traditional RF-Based V2V Communication Systems In Terms Of Speed, Latency, Bandwidth, Interference, And Security. Based On These Evaluations, Adjustments Will Be Made To Optimize The System For Real-World Deployment.

5.RESULTS

Data Transmission Speed

The Results Indicate That Li-Fi Technology Achieves Significantly Faster Data Transmission Speeds Compared To Traditional Radio-Frequency-Based Communication Methods Such As Wi-Fi. Under Optimal Conditions, The Data Rates Can Reach Several Gigabits Per Second, Allowing Seamless Communication Between Vehicles In Real-Time.

Signal Strength And Range

The Experiments Showed That The Signal Strength Of Li-Fi Is Dependent On The Visibility And Alignment Between The Transmitter And Receiver. Under Direct Line-Of-Sight, The System Performed Exceptionally Well Over Short Ranges (Up To 100 Meters). However, Signal Strength Drastically Reduces In The Presence Of Obstacles Such As Other Vehicles Or Environmental Factors Like Rain And Fog.

Reliability

The Reliability Of V2V Communication Using Li-Fi Was Measured By The Packet Delivery Ratio (PDR). The System Demonstrated High Reliability In Clear Conditions, With A PDR Of Above 95%. However, Adverse Weather Conditions Or

Blockages Can Reduce This Reliability, With PDR Dropping To Around 75% In The Worst Scenarios.

Safety

One Of The Key Advantages Of Using Li-Fi Over RF-Based Systems Is The Reduced Likelihood Of Signal Interference, Which Improves Overall Safety. Li-Fi Signals Are Confined To A Vehicle's Line-Of-Sight, Minimizing The Risk Of Eavesdropping And Signal Jamming. This Feature Enhances The Security Of Data Transmitted Between Vehicles.

Environmental Impact

Li-Fi Communication Has A Negligible Impact On The Environment. It Utilizes Visible Light, Which Is A Natural Resource, As Opposed To RF Systems That Might Cause Interference With Other Devices. However, It Requires High-Quality LED Lights That Consume Energy, Albeit Less Compared To Conventional Lighting Systems.

Active. This Helps Ensure That The System Is Functioning Properly When No Fire Is Detected.

6.CONCLUSION

In Conclusion, The Integration Of Vehicle-To-Vehicle (V2V) Communication Using Lifi Technology For Fire Detection Presents A Transformative Solution For Enhancing Road Safety And Emergency Response. Lifi's High-Speed, Secure, And Interference-Free Transmission Allows Vehicles To Detect Fire Hazards In Real Time, Such As Engine Malfunctions Or External Fires, And Quickly Communicate This Information To Nearby Vehicles. This Enables Drivers To Take Immediate Actions, Reducing The Risk Of Accidents And **Improving** Overall Situational Awareness On The Road. The Ability To Integrate With Emergency Systems Further Ensures Faster, Coordinated Responses During Fire-Related Incidents. Lifi's Unique Advantages, Such As **Immunity** Electromagnetic Interference And High Data Transmission Rates, Make It A Reliable Option For Critical **Applications** Intelligent Transportation Systems. As Li-Fi Continues Technology To Evolve, Promises To Further Enhance Vehicle

Fig 5.1: LCD Display When Fire Is Not Detected

Fig 5.2: LCD Display When Fire Is Detected

When The Sensor Detects Fire, The System Activates The Buzzer (ON State) And Sends A High Command To The LCD, Which Displays The Message: "Please Stop Vehicle. Fire Accident Detected." The Light Dependent Resistor (LDR) Value Goes High, Indicating The Presence Of Fire Or Smoke. On The Other Hand, Under Normal Conditions, The Buzzer Remains Off (LOW State), And The LCD Shows A Message Indicating That V2V Communication Is

Ensuring Only Real Threats Trigger The

4. Li-Fi-Based Smart Infrastructure:

That Could Lead To Higher

Alarms,

ISSN 2319-5991 www.ijerst.com Vol. 21, Issue 2, 2025

Accuracy And Fewer False

Safety And Communication Networks. With The Potential To Integrate With Emerging Technologies Like Autonomous Driving And Iot, Li-Fi-Based V2V Communication For Fire Detection Represents A Key Advancement In Building Safer Smarter Transportation Infrastructure For The Future.

Sensors

System.

Develop Smart Traffic Systems That Not Only Communicate With Vehicles But Also Have Their Own Fire Detection Capabilities. In Such Systems, Street Lights Or Traffic Signals Equipped With Li-Fi Can Broadcast Alerts To Vehicles, Directing Them To Safe Routes.

7.FUTURE SCOPE

This Section Should Focus On The Potential Developments And Improvements In This Area. Points To Consider Include:

- 5. Government And Policy Support: Highlight The Need For Regulatory Frameworks And Industry Standards To Facilitate Widespread Adoption Of Li-Fi **Technology** For Emergency Communication, Ensuring That Vehicles, Road Infrastructure, And Emergency Services Work Seamlessly Together.
- 1. Enhancing Range And Reliability: Investigate Ways To Extend The Range Of Li-Fi Transmission, Especially In Complex Or Adverse Environments Weather Conditions (E.G., Integrating With Hybrid Communication Systems Like RF For Fallback In Difficult Conditions).

8.REFERENCES

2. Integration With **Autonomous Vehicles: Explore** How Autonomous Vehicles Can Benefit From Integrating Fire Detection Systems With Li-Fi Technology To Ensure Real-Time, Seamless Communication With Nearby Cars For Immediate Action.

Hartenstein, H.; Laberteaux, L.A Tutorial Survey On Vehicular Ad Hoc Networks. Ieeecommun. Mag.2008,46. [Crossref] J. Clerk Maxwell, A Treatise On Electricity And Magnetism, 3rd Ed., Vol. 2. Oxford: Clarendon, 1892, Pp.68–73.

3. Improving Detection Accuracy: Suggest Future Improvements In Fire Detection

- [2] A. Papathanassiou; A. Khoryaev. Cellular V2x As Essential Enabler Of Superior Global Connected Transportation Service.2 June,2017.
- [3] Fernandez, J.A.; Borries, K.; Cheng, L.; Kumar, B.V.; Stancil, D.D.; Bai, F. Performance Of The 802.11p Physical Layer In Vehicle-To-Vehicle Environments. IEEE Trans. Veh. Technol. 2012, 61, 3–14.
- [4] Zhigangxu,1 Xiaochili,1 Xiangmozhao,1 Michaelh.Zhang,2 And Zhongren Wang3.DSRC Versus 4G-LTE For Connected Vehicle.
- [5] Mrs. Vaishali D. Khairnar, Dr. S.N. Pradhan.V2V Wireless Communication Survey. [6] Yao, Y.; Chen, X.; Rao, L.; Liu, X.; Zhou, X. Lora: Loss Differentiation Rate Adaptation Scheme For Vehicle-To-Vehicle Safety Communications. IEEE Trans. Veh. Technol. 2017, 66, 2499–2512.
- [7] M. Lacage, M. H. Manshaei, And T. Turletti, "IEEE 802.11 Rate Adaptation: A Practical Approach," In Proc. ACM Mswim, 2004, Pp.126–134.
- [8] Y. Wei, J. Chen And S. Hwang, Adjacent Vehicle Number-Triggered Adaptive Transmission For V2V Communications. 2 March 2018.

- [9] Tran, T. X., Piran, M. J., Suh, D. Y., & Choi, J. (2019). Integrated Visible Light Communication For Vehicular Networks: Concept, Applications, And Challenges. IEEE Access, 7, 179632-179649.
- [10] Pathak, P. H., Feng, X., Hu, P., & Mohapatra, P. (2015). Visible Light Communication, Networking, And Sensing: A Survey, Potential And Challenges. IEEE Communications Surveys & Tutorials, 17(4), 2047-2077.