

I

 ISSN 2319-5991 www.ijerst.com

 Vol. 20, Issue 3, 2024 https://doi.org/10.62643/ijerst.2024.v20.i3.pp353-365

353

 Int. J. Eng. Res. & Sci. & Tech. 2024

"MSC: A Novel Chameleon Hash-Based Off-Chain Storage Framework

for Metaverse Applications"

Dr. GANDHAVALLA RAO SAMBASIVARAO, Dr. MOHD ATEEQ AHMED, Dr. FARHEEN SULTANA

Department of Information technology

 Nawab Shah Alam Khan College of Engineering and Technology (NSAKCET

ABSTRACT

With its tamper-resistant features and growing reliability, blockchain has become an ideal platform for decentralised applications;

nevertheless, it has also introduced new concerns related to on-chain overhead. An intriguing research question on the safe

reduction of on-chain storage overhead has emerged in response to the emergence of metaverserelated smart contracts on

blockchain. An innovative decentralised system architecture that allows code or stored data changes without altering on-chain

data is introduced in this study as the Metaverse Off-chain Storage architecture based on Chameleon hash (MSC). To keep the

index consistent even when data is modified, decentralised apps use the Chameleon hash to compute it. With the right

authentication procedures in place, data may be stored off-chain at the same time. When compared to other frameworks of its

kind, testing findings reveal that MSC uses less on-chain storage. When compared to smart contract data storage directly, MSC

also drastically reduced overhead.

Keywords: blockchain | chameleon hash | distributed system | metaverse | storage

1 | Introduction

When we talk about a shared virtual realm that merges physical and digital realities, we're talking about the metaverse. The

metaverse makes use of a number of technologies, including blockchain, which is widely utilised for digital asset management.

But since blockchain is a distributed ledger technology, metaverse-related decentralised applications (dApps) built on it may

grow in size very quickly. Data from the entity blockchain ledger must be saved by every node, which limits the amount of data

that can be stored on-chain [1, 2]. An essential part of the metaverse are digital assets based on the blockchain, as seen in Figure

1. Due mostly to data produced by decentralised applications (dApps) linked to the metaverse, the ever-increasing size of the

blockchain is imposing limits on the volume of transactions. Consequently, an off-chain storage solution is required for

metaverse applications in order to set up decentralised smart contracts and lower the cost of on-chain data storage.

Storage infrastructures based on smart contracts have been suggested; methods for storing key-value data based on smart

contracts are provided by Certledger [3], Smart Contract-based PKI (SCPKI) [4], and TrustCA [5]. Having said that, these

suggestions are storage inefficient and come with big headers. Their recommendation to reduce on-chain storage costs is to use

IPFS for data storage and then store data indices on the blockchain. These suggestions highlight the method's use for the safe

upkeep of Public Key Infrastructure (PKI) certificates as altering IPFS data necessitates obtaining a new index.

I

 ISSN 2319-5991 www.ijerst.com

 Vol. 20, Issue 3, 2024 https://doi.org/10.62643/ijerst.2024.v20.i3.pp353-365

354

 Int. J. Eng. Res. & Sci. & Tech. 2024

FIGURE 1 | The architecture of metaverse in integration of the MSC.

with limited update needs. In practical applications, data up- dates are a common requirement. For example, domain name

administrators need to frequently configure domain resolu- tion information in DNS. This leads to more overhead while sending

transactions to call smart contracts after updating the data stored in IPFS. Namecoin [6] introduced a solution involv- ing the

creation of a new blockchain dedicated to storing and managing key-value data. Indeed, as mentioned by Sayeed [7], Internet

infrastructure built upon existing blockchains can offer enhanced security. Hence, there is a demand for a frame- work to

implement off-chain data storage utilizing existing pub- lic blockchains.

This paper introduced a unique framework named Metaverse Off-chain Storage Framework based on Chameleon hash (MSC)

for implementing metaverse applications. The difference be- tween MSC and IPFS lies in MSC's capability to alter data in

distributed storage without necessitating changes to the index. Data's chameleon hash is used as an index to guarantee that the

index remains unaltered following data modifications. In addition, the storage of frequently updated data is made easier

2 | Related Work

Trusted third-party (TTP) solutions in Internet infrastructures have a centralised architectural design, which causes a lot of

problems [8]. These designs must have a decentralised architecture in order to be implemented without TTP. Numerous plans

to construct blockchain-based Internet infrastructure have been put forth.

There were some suggestions for PKI implementation architectures that relied on blockchain technology. A number of

organisations have suggested smart contract-based architectures to incorporate PKI, including CertLedger[3], SCPKI[4],

TrustCA[5], and IKP [9]. Certificate revocation and transparency were introduced by CertLedger [3] using blockchain

technology. An attribute storage architecture was built by SCPKI [4]. While IPFS stores data in the light version, the smart

I

 ISSN 2319-5991 www.ijerst.com

 Vol. 20, Issue 3, 2024 https://doi.org/10.62643/ijerst.2024.v20.i3.pp353-365

355

 Int. J. Eng. Res. & Sci. & Tech. 2024

contract stores attribute data in the full version. By utilising IPFS, TrustCA [5] has reduced the on-chain storage overhead

and implemented smart contract-based certificate transparency. There is a new blockchain-based PKI proposal called IKP [9]

that can automatically respond to Certificate Authority (CA) misbehaviour and incentivises individuals who help find it. It

uses smart contracts to store PKI-related data and has detectors that watch the smart contract logs for CA misconduct. For the

purpose of managing public key infrastructure (PKI), Yakubov [10] suggested a system that uses blockchain technology to

issue, validate, and revok certificates. By establishing a trust chain between smart contracts, this framework makes it possible

to store certificate data inside them. The use of on-chain storage in these proposals, however, raises the possibility of additional

on-chain storage overhead. While some of these suggestions do use IPFS to lessen the burden of on-chain storage, this

architecture may make it difficult to make frequent changes to stored data.

The use of blockchain technology for storage has also been considered in other proposals. Storage architectures based on the

blockchain have been suggested by Saqib Ali and Shangping Wang. The PingER decentralised data storage and access

framework was created by Saqib Ali [11]. It entails putting the file into a P2P network, enclosing it in a transaction, and then

sending it to the blockchain. Shangping Wang [12] utilizes Ethereum smart contracts to store encrypted file parameters. The

proposed architecture leverages smart contracts as a TTP, allowing users to decrypt data in cloud storage for a legitimate

access time. These proposals use blockchain as a TTP to ensure that data cannot be which store the resolution information of

domain names in a specific smart contract. While Namecoin and DecDNS proposed new blockchains for data storage, they

are susceptible to attacks. ENS [14] stores data in smart contracts, and the on-chain stor- age overhead is very high. Additional

overhead is in- curred when there's a need to modify the data.

There are also proposals to use the chameleon hash to design architectures. Song Guo proposed an EC-based chameleon hash

scheme, which can derive multiple public keys from private key to ensure the privacy of users [15]. IB-CH [16] is a signature

key distribution scheme based on the chameleon hash, which can reduce the computational overhead and the size of public

pa- rameters. Songwei Fan proposed an editable blockchain scheme based on the chameleon hash [17]. It uses the chameleon

hash to ensure that after modifying block, the overall structure of block- chain is not affected. They have editable architectures

designed using chameleon hash, which embodies the main characteris- tics of chameleon hash. However, these architectures

have not been used to implement off-chain storage to reduce the cost of on-chain storage. MSC is the first framework

implement off- chain storage based on chameleon hash.

3 | Preliminaries

Chameleon hash was introduced in [18], which is the basis of ODSC. It is a hash function with a trapdoor; the private key

owner can update the data without causing the output hash value to change. Elliptic curve is used in MSC to construct the

chameleon hash function for implementing MSC due to its abil- ity to provide better security with a shorter private key.

Abelian group Gp is used to construct chameleon hash, where p represents a large prime number. To ensure security, the

cardi- nality of Gp should be divisible by another large prime number q [19]. A point O is chosen from Gp as the base point

for calcu- lations. In the MSC-based demo program for testing, the P-256 curve is chosen for implementation, but in practical

applications, any legally defined elliptic curve on a finite field can be selected. Initially, x ∈ [1, q − 1] is selected as the

chameleon key, then y = xO is calculated as the public key. In addition, a hash func- tion h is needed to map the original

message m1 to a large integer in order to compute the hash of a message m1. When calculating the hash value of message m1

for the first time, a random number r1 must be chosen. Then, the chameleon hash value CH(m1, y, r1) of message m1 can be

computed as follows: modified and cannot be used to store modifiable data. CH(m1, y, r1) = h(m1) ⋅ O + r1 ⋅ y (1) Namecoin

[6], DecDNS [13], and Ethereum name service (ENS) [14] are domain name services based on blockchain. Namecoin [6]

implemented the storage of key-value data within its blockchain transaction database based on the code of Bitcoin. Namecoin

supports “.bit” address, after paying a fixed registration fee, pub- When modifying the data associated with the chameleon

hash, assuming the new message is m2, a new random num- ber r2 can be obtained through the collision finding algorithm

Find(m1, r1, m2, x) as lic keys can be added to a domain to enable PKI. DecDNS [13] proposes a distributed data storage

architecture, which stores the Find(m1, r1, m2, x) = (xr1 + h(m1) − h(m2))x−1 (2) verification information of files on

blockchain, and distributed nodes store the resolution information of domain names. ENS To ensure that CH(m1, y, r1) =

CH(m2, y, r2), expand the formula as is a domain name services based on Ethereum smart contract, h(m1) ⋅ O + xr1 ⋅ O =

h(m2) ⋅ O + xr2 ⋅ O Hence, the collision algorithm's calculation formula can be de- rived. This approach ensures that the

output hash value remains unchanged when updating the data. On the verifier's side, the verifier can calculate the new hash

I

 ISSN 2319-5991 www.ijerst.com

 Vol. 20, Issue 3, 2024 https://doi.org/10.62643/ijerst.2024.v20.i3.pp353-365

356

 Int. J. Eng. Res. & Sci. & Tech. 2024

output to verify whether the random number r2 has been generated correctly with the private key . Only the holder of the

private key can generate a valid random number r2, making the chameleon hash unforgeable.

3 | Framework Design

MSC is used to store off-chain data, and it needs to rely on blockchain to store the digest of data to ensure credibility and

transparency of data. MSC can be used to implement internet infrastructure such as PKI, BGP, and DNS. Compared with other

similar frameworks, MSC can reduce the storage over- head on the chain, which is conducive to store data that need to be

changed frequently. In MSC, there are two distinct types of nodes:

• Full Node (FN): These nodes run the full node program of blockchain and are capable of broadcasting transactions.

• Monitoring Agent (MAn): These nodes run the framework, send transactions to the blockchain, and monitor smart con- tract

events through Full Nodes (FN). The smart contract is needed to validate the nodes' permission. The purpose of the smart

contract and an ERC specification
1

will be explained later. The specific is beneficial for implementing MSC-based

applications.

FN has the complete blockchain ledger data, and other nodes can broadcast transactions by connecting to FN and monitor events

on blockchain. In the case of lower security require- ments, existing APIs can be used instead of running a full node server, such

as using Infura's services. MAn has the capability to deploy smart contracts and manage its own authority within the same

application. A P2P network is established among various MAs using Kademlia [20], and all of them maintain a database to

manage off-chain data.

As depicted in Figure 2, the overall workflow of MSC consists of four distinct steps as follows. Step. I shows the contract cre-

ation and data initialization process. Step. II shows the process of a new node obtaining the connection information from smart

contract and joining the P2P network. Step. III shows the pro- cess of storing data in MSCbased program. Step. IV shows the

process of obtaining stored data from an MSC-based program.

4.1 | Contract Creation and Data Initialization

In Step. I, as illustrated in Figure 2, a genesis node MA0 serves as a bootstrap node, which is necessary for setting up the P2P

network and creating a smart contract on the blockchain. MA0 sends a transaction to the blockchain through FN for the pur-

pose of creating and initializing the smart contract. Smart con- tract can be developed according to the the syntax specified and

deployed by default method of blockchain. The data that the smart contract needs to initialize are shown in Table 1.

To restrict the operational permissions of the contract, MA0 sets the attribute, ensuring that only the can manipu- late the

information within the smart contract. The bootstrap field in the smart contract is filled by MA0 with its own P2P connection

information. And genesis is generated after MA0 creates genesis data and calculates the chameleon hash of data. The genesis

data, denoted as gd, are created prior to MA0 ini- tializing the attributes of the smart contract. In alternative sce- narios, gd can

be configured as needed. Once MA0 creates gd, the signature is calculated using the chameleon hash, and the signature can be

employed for verification and as an index for the data. During the initialization process, MA0 shares gd on the P2P network

and writes it to the smart contract.

I

 ISSN 2319-5991 www.ijerst.com

 Vol. 20, Issue 3, 2024 https://doi.org/10.62643/ijerst.2024.v20.i3.pp353-365

357

 Int. J. Eng. Res. & Sci. & Tech. 2024

FIGURE 2 | MSC overall workflow. It shows the workflow of MSC, which is divided into four parts.

The pseudo-code of the algorithm responsible for creating the genesis data is shown in Figure 3. To ensure security, it is im-

perative to specify the version and the latest block hash of the blockchain when the data are created and modified. A list is con-

tained in gd to control data write permissions.

The distributed network running this framework will synchro- nize data on the network according to list. To support signatures

of larger data, the function Signature computes a digest of data to shorten the input. According to the pseudocode of Figure 3,

the required attributes of genesis data gd are shown in Table 2. The list in gd can be modified by MA0 without affecting gd. index

because the index of gd can be obtained through the chame- leon hash.

4.2 | Read Attribute and Connect P2P Network

The connection information bootstrap for the genesis node MA0 is stored in the smart contract. New node can discover other

nodes and join the P2P network based on the bootstrap informa- tion. As the Step. II shown in Figure 2, new nodes MA1 and

MA2 can join the P2P network by the following process.

1. MA1 reads bootstrap from smart contract, then connects to MA0;

2. MA1 discover other nodes in the P2P network through MA0 and built its own routing table. Now other nodes can also discover

other nodes through MA1;

3. If another new node, like MA2, intends to join the P2P net- work at a later stage, it can establish a connection with MA1 to

discover other nodes within the P2P network.

I

 ISSN 2319-5991 www.ijerst.com

 Vol. 20, Issue 3, 2024 https://doi.org/10.62643/ijerst.2024.v20.i3.pp353-365

358

 Int. J. Eng. Res. & Sci. & Tech. 2024

TABLE 1 | Smart contract initialization attributes.

 Attribute Description

owner

genesis

 Owner of smart contract bootstrap

Index of genesis data on P2P network

correspond to the data lifecycle: created, modified, and revoked. While an event is emitted, the corresponding callback function

will be executed. As a result, new nodes can analyze the event log to synchronize data by utilizing these events. New nodes can

sequentially traverse the event log in the smart contract to

 TABLE 2 | Genesis data initialization attributes.

index string The chameleon output of genesis data

pubKey string Chameleon public key

random string Chameleon random number

blockHash string Latest block hash

timestamp int Data's create timestamp

version int Data modification version

list []byte Permission list in the application

5 | Security Analysis

5.1 | Replay Attack

Suppose an adversary wants to use the previous signa- a new

data tuple data2 = (m2, pk, r2, sign2). Within a data tuple,

m = (value|blockHash|version), nodes in MSC-based application can utilize the blockHash and version to verify that the data

are the latest. may attempt to exploit the original data data1 to overwrite the new data data2, potentially executing a replay

attack.

Definition 1. Replay-resistant We say that the MSC-based application is replay-resistant if the success probability of any

polynomial-time adversary is negligible in the following experiment:

• A oracle initializes with a chameleon hash key pair (pk, sk);

• access with message to obtain (r , sign), where

Attribute Type Description

I

 ISSN 2319-5991 www.ijerst.com

 Vol. 20, Issue 3, 2024 https://doi.org/10.62643/ijerst.2024.v20.i3.pp353-365

359

 Int. J. Eng. Res. & Sci. & Tech. 2024

ture to overwrite the new data. Assume that the original data tuple is

data1 = (m1, pk, r1, sign1), and its owner modifies it to

TABLE 3 | Required attributes of data.

 index string The chameleon output of data

pubKey string Chameleon public key

random string Chameleon random number

blockHash string Latest block hash

timestamp int Timestamp when create

version int Data modification version

data []byte Byte array of data

sign1 = CH(m, pk, r1), and r1 is randomly chosen by oracle

• modifies blockHash, version or value in to construct a new message mf in polynomial time;

• access oracle with (mf, r1, sign1);

The adversary is succeed iff CH(m, pk, r1) = CH(mf, pk, r1).

Proof. According to the security proof of chamelon hash [18], the chameleon hash is collision-resistant. Therefore, no

polynomial-time adversary can construct a new message mf such that CH(m, pk, r1) = CH(mf, pk, r1). □ □

FIGURE 4 | Synchronize workflow.

Attribute Type Description

;

I

 ISSN 2319-5991 www.ijerst.com

 Vol. 20, Issue 3, 2024 https://doi.org/10.62643/ijerst.2024.v20.i3.pp353-365

360

 Int. J. Eng. Res. & Sci. & Tech. 2024

5.2 | Data Security

There are five operations in MSC: genesis, create, modify, revoke, and synchronize. genesis is a unique operation used to

initialize MSC, which is similar to create. In order to demonstrate the se- curity of these operations, six methods are defined as

Table 4. These methods can constitute the five data operations de- scribed above.

public–private key pair is (pk0, sk0), and the permission list con- tained in genesis data is pl. When initializing MSC, MA0 con-

structs genesis data gd = (pk0, timestamp, version = 0, pl), then signs gd with chameleon hash to get index and random number

by index, r = MA0Sign(sk0, gd). MA0 constructs genesis message

gm = (gd, index, random). The operation of MA0 at the time of genesis can be represented as

| Initialization Security

As mentioned above, genesis is the operation that can only be performed once by the genesis node, which corresponds to

Step. I of Figure 2. Assuming that the genesis node is MA0, its

With the operation (5), index and random are filled in smart contract by genesis node MA0. The genesis node MA0 publishes

data gm to the P2P network with index, and emits created event in smart contract with parameter index and random. According

to the characteristics of the chameleon hash, only the genesis TABLE 4 | Methods included in data operations.

Method Description

MAnSign Sign data by chameleon hash

MAnResign Resign data to keep index not change by chameleon hash

Publish Publish data in P2P network

Emit Emit event in smart contract

Sync Synchronize data from P2P network with data index

Verify Verify data ownership

node MA0 can generate valid index and random [18]. In addition, smart contract log is public, and blockchain transactions con-

tain sender's information.

Other nodes can use the information and smart contract log to verify whether the data on P2P network have been falsified.

Therefore, the unforgeability of chameleon hash and the trans- parency of blockchain ensure that the genesis message gm is

unalterable.

5.2.1 | Manipulate Data Security

Manipulating data operation is shown as the Step. III of Figure 2. assuming that another node MA1 needs to cre- ate new

data data0 in MSC. MA1 has public–private key pair (pk1, sk1). Similar to genesis, MA1 needs to construct a message

d0 = (data0, timestamp, version = 0), the signs

MA1 can send transactions with own address, so only MA1 can revoke its data. The security of revoke is guaranteed by the char-

acteristics of blockchain.

I

 ISSN 2319-5991 www.ijerst.com

 Vol. 20, Issue 3, 2024 https://doi.org/10.62643/ijerst.2024.v20.i3.pp353-365

361

 Int. J. Eng. Res. & Sci. & Tech. 2024

5.2.2 | Synchronize Security

synchronize is the operation of other nodes after monitoring smart contract events. It corresponds to Step. IV of Figure 2. The

process has been described in Section 4, and it is the process of other nodes after one node in P2P network performed (6), (7),

or (8). We define Typeevent {created, modified, revoked}, it rep- resents the type of event in smart contract log monitored by

a node MAn. The address that emitted the event is address.

6 | Experiments

6.1 | Experimental Environment

A demo program
2

based on MSC is developed using Go-lang for experimentation. And the smart contract for testing is

deployed on the Ethereum Sepolia testnet.
3

Fifteen nodes were used to evaluate the functionality and performance of the

program. These 15 nodes are all cloud servers, and their specifications are shown in Table 5.

To validate the feasibility of the framework, we conducted func- tional tests on the program. Additionally, performance testing

was carried out to obtain measurable system metrics.

6.2 | Function Test

After deploying the node network, the CLI tool is used to sys- tematically store files of varying sizes, including 1kb, 5kb, 20kb,

50kb, 100kb, 200kb, 500kb, 1000kb, and 2000kb, into the net- work. It is important to note that files larger than 2000kb were

not tested, as they exceed the default transfer size limit of the RPC interface.

The demo program was able to create, modify, and revoke data in all the tests, aligning with the expected behavior of MSC.

6.3 | Performance Test

6.3.1 | Time-Consumption

Since nodes in MSC-based applications need to synchronize data after listening to smart contract events, it is necessary to test

whether the overall time consumption is within a tolerable range. There are two types of time consumption in MSC for data

processing as follows.

• Overall time is the time taken from when the RPC inter- face receives data to the completion of data synchroniza- tion by

all nodes. It is the overall time consumption of data processing.

• Synchronize time is the time consumption for all nodes to complete the corresponding operation after monitor- ing

created or modified event. It is a part of the overall time consumption.

Time-consumptions is obtained according to the log informa- tion, the file size and time consumptions line graph is shown in

Figure 9. From Figure 9, the overall time has weak correlation with file size, relatively more dependent on the consensus time.

I

 ISSN 2319-5991 www.ijerst.com

 Vol. 20, Issue 3, 2024 https://doi.org/10.62643/ijerst.2024.v20.i3.pp353-365

362

 Int. J. Eng. Res. & Sci. & Tech. 2024

TABLE 5 | Cloud server specifications.

The line graph of file size and time

consumption of synchro- nize time is

shown in Figure 9. The secondary axis

of synchro- nization time is on the

right side of Figure 9, and its unit is

milliseconds. The synchronization

time is proportional to the file size.

Time consumption is more dependent

on the block- chain consensus time as

every other blockchain applications.

The data storage time consumption of MSC is within the tol- erable range.

6.3.2 | On-Chain Storage Consumption

The gas table encompasses the gas costs associated with various operations in the Ethereum virtual machine (EVM). To accu-

rately gauge the storage costs of different on-chain storage meth- ods, the gas table in go-ethereum was adjusted for

measurement purposes. In this modification,
4

all non–storage-related costs of operations were standardized to a value of 1.

Four types of con- tracts of different data storing methods are deployed on the local test node as follows.

1. Direct Storage: Receive encoded data, then store the data in smart contract.

2. On-chain NFT: Receive a Nonfungible Tokens (NFT) to- ken-id and encoded data, which is subsequently stored into a map

within the smart contract. The map is structured as a uint256 to string map, signifying the data resource associ- ated with an

NFT.

3. Off-chain NFT: Receive the NFT token-id and IPFS path, which is subsequently stored in the map within the smart contract.

The path serves as a reference to the location of the corresponding image in IPFS.

4. MSC: Receive the chameleon hash and random number, then emit event with them as parameters. The chameleon hash

corresponds to the index of file in P2P network.

After storing data on these smart contracts respectively, the ex- perimental results are shown in Table 6. Without the impact of

computational operation of the gas table, the on-chain storage overhead of storage method can effectively demonstrate by the

experimental results. According to the gas usage of direct on- chain storage and on-chain NFT, it is clear that the overhead of

direct on-chain storage can be up to 6000 times the size of MSC. In contrast, off-chain storage can significantly reduce storage

overhead. The overhead of off-chain storage is indepen- dent of file size due to only index needs to be on-chain storage.

 Item

CPU

Memory

Bandwidth

System

 Description

 Intel Xeon Cascade Lake 8255C/Intel Xeon Cooper

Lake(2.5GHz/3.1GHz)

2GB

10Mbps

Ubuntu Server 20.04 LTS x64

I

 ISSN 2319-5991 www.ijerst.com

 Vol. 20, Issue 3, 2024 https://doi.org/10.62643/ijerst.2024.v20.i3.pp353-365

363

 Int. J. Eng. Res. & Sci. & Tech. 2024

FIGURE 5 | Time consumptions in MSC.

Furthermore, it is apparent that MSC exhibits lower gas con- sumption than Off-chain NFT employing IPFS. Based on the

experiments on on-chain storage overhead, MSC has demon- strated its ability to substantially reduce on-chain storage overhead.

6.3.3 | Comparison

The gas usage of MSC and other similar framework while cre- ating, modifying, or revoking data are measured in experiment.

SCPKI, IKP, and BGPCoin are used for comparison due to they have similar operations to MSC.

1. Contract creation: All blockchain-based frameworks need to deploy smart contract. Contract creation is the first step in

framework initialization.

2. Create data: Insert new data into application. In MSC-based application, data are stored in a small-scale P2P network. In

other frameworks, data are stored in IPFS.

3. Modify data: Modify data for a specific index. After modi- fying data in corresponding storage, modify data's onchain index.

4. Revoke data: Remove the corresponding data in applica- tion. Delete data of the corresponding index in storage, and marks

the data as being revoked on blockchain.

Comparable processes in SCPKI, IKP, and BGPCoin can be clas- sified into these four operations for the purpose of comparison.

The comparison of gas consumption is shown in Figure 10. And to facilitate visualization, the gas usage for contract creation

was uniformly reduced (divided by 10). As shown in Figure 10, less gas is consumed in MSC comparing to other frameworks.

The gas usage for contract creation related to the implementa- tion of smart contract, it is 119.3% higher than the gas usage in

SCPKI. Nevertheless, MSC manages to reduce the on-chain overhead by 31% in comparison. Due to the fact that MSC only

I

 ISSN 2319-5991 www.ijerst.com

 Vol. 20, Issue 3, 2024 https://doi.org/10.62643/ijerst.2024.v20.i3.pp353-365

364

 Int. J. Eng. Res. & Sci. & Tech. 2024

7 | Conclusions

In this research, we presented MSC, a novel data storage system for creating metaverse decentralised applications (dApps) using

smart contracts and chameleon hashes. In MSC, the use of chameleon hash allows for the modification of off-chain data without

affecting the on-chain index. Transparency in data storage is guaranteed by recording events of metaverse-related smart

contracts in blockchain. Furthermore, administrators may alter application code or stored data inside MSC with ease because

to the trapdoor function of chameleon hash. Because of the immutability of transactions and the transparency of blockchain,

data saved in a P2P network cannot be altered. We have built an MSC-based demo application in Go-lang to test the viability

of MSC. The gas table of go-ethereum has been adjusted to assess the actual storage overhead in MSC and other frameworks,

allowing us to disregard the influence of other operations. The experimental results show that compared to other frameworks,

MSC offers clear benefits, including a significant reduction in on-chain data storage overhead. As a result, MSC may be used

to create blockchain-based apps that store data off-chain with much less on-chain overhead.

However, as MSC is dependent on the blockchain's consensus speed, it is unable to meet superior real-time performance on

current public chains. So, DNS, PKI, and BGP are the only low-real-time applications that MSC supports. As blockchain

technology continues to advance, MSC may be upgraded to operate on blockchain networks designed for high performance or

the Internet of Things. The improved MSC, when combined with a high-performance blockchain, will be able to provide very

fast services at that time.

References

[1] The paper "Slimchain: Scaling Blockchain Transactions Through Off-Chain Storage and Parallel Processing" was presented

at the VLDB Endowment conference in 2021 and can be found in volume 14, issue 11, pages 2314–2326.

The authors are C. Xu, C. Zhang, J. Xu, and J. Pei.

"Smdsb: Efficient Off- Chain Storage Model for Data Sharing in Blockchain Environment" (Springer, 2021), 225–240, is an

article by R. Kumar, N. Marchang, and R. Tripathi in the Machine Learning and Information Processing:

Proceedings of ICMLIP 2020 book.

"Certledger: A New PKI Model With Certificate Transparency Based on Blockchain," published in Computers & Security 85

(2019): 333-352, was written by M. Y. Kubilay, M. S. Kiraz, and H. A. Mantar.

[2] In the Proceedings of the ACM Workshop on Blockchain, Crypto-currencies and Contracts (ACM, 2017), M. AlBassam

presents "SCPKI: A Smart Contract-Based PKI and Identity System" (pp. 35–40).

[3]"Trustca: Achiev-ing Certificate Transparency Through Smart Contract in Blockchain Platforms" (IEEE, 2020), 1-6. J. Zhao,

Z. Lin, X. Huang, Y. Zhang,and S.Xiang. on: HPBDD&IS 2020 International Conference.V. Durham, "Namecoin,"

Namecoin.org, 2010. 6.

 [4] In their article "Assessing Blockchain Consensus and Security Mechanisms Against the 51% Attack," Sayeed and Marco-

Gisbert (2019) cite Applied Sciences 9, no. 9: 1788.

 [5] ArXiv preprint arXiv:2001.00747, "Improving PKI, BGP, and DNS Using Block- chain: A Systematic Review" (2020), F.

S. Ali and A. Kupcu.

 [6] In their paper "IKP: Turning a PKI Around With Decentralised Automated Incentives," published in 2017 at the

IEEE Symposium on Security and Privacy (SP) (IEEE, 2017), S. Matsumoto and R. M. Reischuk discuss this topic in length.

 [7] [In the presentation "A Blockchain-Based PKI Management Framework" given at the First IEEE/IFIP International

Workshop on Managing and Managed by Blockchain (Man2Block) Colocated with IEEE/IFIP Noms 2018, which took place in

Tapei, Taiwan from April 23-27, 2018, pages 1-6, authors A. Yakubov, W. Shbair, A. Wallbom, and D. Sanda were recognised.

I

 ISSN 2319-5991 www.ijerst.com

 Vol. 20, Issue 3, 2024 https://doi.org/10.62643/ijerst.2024.v20.i3.pp353-365

365

 Int. J. Eng. Res. & Sci. & Tech. 2024

 [8] In the paper "A Blockchain-Based Decentralised Data Storage and Access Framework for Pinger" published in the

2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE

International Conference on Big Data Science and Engineering (Trustcom/Bigdatase) (IEEE, 2018), pages 1303– 1308, the

authors provide a blockchain-based solution for decentralised data storage and access.

 [9] "A Secure Cloud Storage Framework With Access Control Based on Blockchain," published in 2019 by IEEE Access,

was authored by S. Wang, X. Wang, and Y. Zhang.

 [10]In "A Data Storage Method Based on Blockchain for Decentralisation DNS," J. Liu, B. Li, L. Chen, M. Hou, F. Xiang,

and P. Wang present their work (in

	ABSTRACT
	1 | Introduction
	2 | Related Work
	3 | Framework Design
	4.1 | Contract Creation and Data Initialization
	4.2 | Read Attribute and Connect P2P Network

	Attribute Description
	5 | Security Analysis
	5.1 | Replay Attack
	5.2 | Data Security
	5.2.1 | Manipulate Data Security
	5.2.2 | Synchronize Security

	6 | Experiments
	6.1 | Experimental Environment
	6.2 | Function Test
	6.3 | Performance Test
	6.3.1 | Time-Consumption
	6.3.2 | On-Chain Storage Consumption
	6.3.3 | Comparison

	7 | Conclusions
	References

